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ABSTRACT

Kinetics of exchange processes between the sodium ions from zeolite A

and cadmium ions from solutions containing different contents of Naþ

ions was determined by measuring changes in the concentrations of

cadmium and sodium ions in both zeolite and the liquid phase during the

exchange processes. The exchange kinetics were analyzed in accordance
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ORDER                        REPRINTS

with the kinetic model derived on the basis of the second-order forward

reaction between the cadmium ions from solution and the sodium ions

from zeolite A and on the second-order backward reaction between

sodium ions from solution and cadmium ions from zeolite A. The

equilibrium cadmium uptake on zeolite A decreases with increasing

concentration of sodium ions in the liquid phase. Agreement between the

measured exchange kinetics and the exchange kinetics calculated by

numerical solutions of the model equations shows that the exchange

process takes place in accordance with the proposed model.

Key Words: Zeolite A; Ion exchange; Sodium ions; Cadmium ions;

Exchange kinetics.

INTRODUCTION

It is well known that heavy metals are very toxic elements and their

discharge into receiving waters causes detrimental effects on human health and

the environment.[1] One of the most toxic metals, cadmium, finds its way to

water bodies through wastewaters from the following industries: metal plating

cadmium–nickel batteries, phosphate fertilizer, mining, pigments, stabilizers,

and alloys.[2,3] The effects of acute cadmium poisoning in humans are very

serious, among them are high blood pressure, kidney damage, and destruction of

testicular tissue and red blood cells. Small amounts of Cd2þ ions are believed

to be harmful to humans, having been associated with hypertensive diseases.[4]

For this reason, there is a constant need to remove heavy metals, including

cadmium, from industrial effluents and other wastewaters.

Different technologies for removal of heavy metals, such as chemical pre-

cipitation, electro-flotation, reverse osmosis, adsorption on activated carbon, and

ion exchange, are described in literature.[5] Ion exchange seems to be an attrac-

tive method, especially when low-cost materials can be used as exchangers.[6]

Although some of these methods may be more effective than ion exchange (e.g.,

the precipitation process leaves the waste solution with several parts per million

of cadmium[7]), ion exchange is considered attractive because of the relative

simplicity of its application.[8] Both natural[6,8–14] and synthetic[15–22] zeolites

can be widely used as effective and/or selective cation exchangers.

Although natural zeolites are cheaper than synthetic ones and can be used

directly in columns in crushed form, their exchange capacity considerably

depends upon the content of zeolitic phase in the rock, the type of cation

exchange form, and admixture character. This may cause serious difficulties in

applications where the exchange process needs to be very well controlled.

Besides, the use of natural zeolites is often limited to the countries that have

their own deposits. An alternative is use of cheap synthetic zeolites, e.g., zeolite
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4A, which is widely produced as a detergent builder and has defined chemical

composition and high and constant cation-exchange capacity. Of course, the ion

selectivity must also be considered in the choice of zeolite exchanger.

Our previous studies of the thermodynamics[21–23] and kinetics[23–25] of

the exchange processes between heavy metal ions (Cd2þ, Pb2þ, and Zn2þ)

from solutions and sodium ions from zeolite A have shown that: (i) the

selectivity of zeolite A for cadmium ions is high, e.g., the separation factor

aCd � 20 in a wide range of equivalent cadmium ion fractions (0–0.8), total

normality (0.02–0.1meq dm23), and temperature (20–608C); (ii) the kinetic

of the exchange process is governed by the second-order reaction of the

cations from solution with the cations from zeolite; and (iii) the influence of

the backward reaction (exchange of sodium ions from solution with heavy

metal ions from zeolite) is negligible if an additional amount of Naþ ions is

not present in the system. Hence, all sodium ions from zeolite A may be

exchanged with the heavy metal ions from solutions in “pure” systems,[21–25]

e.g., in the absence of the additional amount of the competing exchangeable

cations (e.g., Naþ). On the other hand, “pure” exchange systems appear very

rarely in the purification practice; the presence of different competing cations

is quite usual.[14,26–31] Since an increase in concentration of the competing

cations results in a decrease of the cation binding capacity,[32] which may

influence the exchange kinetics, our intention is to examine the influence of

sodium ion concentration in the liquid phase on the exchange kinetics between

cadmium ions from solution and sodium ions from zeolite A.

EXPERIMENTAL

Zeolite 4A (SILKEM, Kidričevo, Slovenia), which has the following

oxide chemical composition: 1.087 Na2O .Al2O3
. 1.99 SiO2

. 4.56 H2O and

particle size in the range of 1.5–10mm (with mean particle size of 4.5mm),[23]

was used as the cation exchanger. Before use, the zeolite was kept in a

desiccator with saturated NaCl solution for 48 hr.

The Cd(NO3)2 . 4 H2O (Ventron, Germany) and NaNO3 (Riedel de Haen

A.G., Germany) were used for the preparation of the stock solution of

cadmium nitrate and solutions of sodium nitrate, respectively. Distilled water

was used as a solvent. The Cd(NO3)2 solutions and mixed NaNO3/Cd(NO3)2
solutions were prepared by mixing appropriate volumes of the stock solutions

of cadmium nitrate as well as sodium nitrate and cadmium nitrate,

respectively, and distilled water.

Kinetics of the exchange processes between Cd2þ ions from solution and

Naþ ions from zeolite 4A were measured as follows: 0.2 g of zeolite 4A was

introduced into a reaction vessel containing 200mL of a thermostated (258C),
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ORDER                        REPRINTS

well-mixed solution with appropriate amounts of Cd2þ (�4.5 � 1023

mol dm23) and Naþ ions (0–0.348mol dm23). The temperature of the system

was maintained by a circulatory water bath during the exchange process. The

moment at which zeolite 4Awas added to the solution was taken as the zero time

(tE ¼ 0) of the exchange process. The reaction mixture (suspension of zeolite 4A

in solution) was stirred by a Teflon-coated magnetic bar driven by a magnetic

stirrer. At various times, tE, of the exchange process, aliquots of the reaction

mixture were drawn off the reaction vessel and centrifuged to separate the solid

from the liquid phase in order to stop the exchange process. Aliquots of the clear

liquid phase above the sediment (Na, Cd form of zeolite A) were diluted with

distilled water to the concentration ranges appropriate for measuring the

concentrations of sodium and cadmium by atomic absorption spectroscopy.

The sediments separated from the suspensions at various times tE were

washed with distilled water, dried at 1058C overnight, and kept in a desiccator

with saturated NaCl solution for 48 hr. Thereafter, the samples were dissolved

in a 1 : 1 HCl solution. The solutions were diluted with distilled water to the

concentration ranges appropriate for measuring the concentrations of sodium

and cadmium by atomic absorption spectroscopy.

Concentrations of sodium and cadmium in the solutions were measured

by the Perkin–Elmer 3030B (USA) atomic absorption spectrometer.

RESULTS AND DISCUSSION

Figure 1 shows changes in concentrations, CCd,s, of cadmium ions in

zeolite A during the exchange of sodium ions from zeolite A with cadmium

ions to the solutions having an approximately constant starting concentration

(CCd,s
0 � 4.5 � 1023mol dm23; see Table 1) of cadmium ions and different

concentrations (CNa,s
0

¼ 0–0.348mol dm23; see Table 1) of sodium ions. In

all cases, the equilibrium exchange (CCd,z ¼ CCd,z (eq); plateau of the CCd,z vs.

tE curves) was reached in less than tE ¼ 25min (see Fig. 1), but the value of

CCd,z(eq) decreases with increasing concentration CNa,s
0 of the sodium ions in

solution (see Figs. 1 and 2 and Table 1).

The overall exchange reaction of Naþ ion fixed in the zeolite (e.g., zeolite

4A) by divalent metallic cation Me2þ (e.g., Me2þ ¼ Cd2þ) in the solution can

be written:

Cd2þ(s)þ 2Naþ(z)�
kf

kb
Cd2þ(z)þ 2Naþ(s)

where kf and kb are rate constants of the forward and backward reactions,

respectively, and the denotations (s) and (z) refer to the ions in solution and

zeolite, respectively.

Biškup and Subotić928
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ORDER                        REPRINTS

Most researchers assume that diffusion of exchangeable ions through the

channel/void system of zeolites is the rate-determining step of the exchange

process.[26,32–40]

Another, less popular, approach to the kinetics of ion exchange of zeolites

assumes that zeolite is an open structure and that all cations in zeolite are

instantaneously and simultaneously available for exchange with the cations

from solution and thus that a chemical exchange is slow compared to any

difussion process, i.e., the chemical exchange is the rate-determing

mechanism.[8,23–26,29,41] Assuming that the kinetic order of chemical

exchange is two with respect to the number (Q
1
2 QtE

) of available sites

for the exchange, Blanchard et al.[8] derived the kinetic equation:

ÿdQt

dtE
¼ K(Q1 ÿ QtE )

2 (1)

Figure 1. Kinetics of exchange between sodium ions from zeolite A and cadmium ions

from solutions having nearly constant initial concentration of cadmium ions

(CCd,s
0 � 4.5 � 1023mol dm23; see Table 1) and different initial concentrations of

sodium ions (CNa,s
0

¼ 0 (W, †), 0.0215 (A), 0.0471 (B), 0.087 (4), and 0.174 (O)

mol dm23. Solid curve and symbol W represent the exchange kinetics with CCd,s
0

¼

4.27 � 1023mol dm23 and dashed curve and symbol† represent the exchange kinetics

withCCd,s
0

¼ 4.46 � 1023mol dm23. Curves represent the concentration of cadmium ions

in zeolite A (CCd,z) vs. time of the exchange process (tE) functions calculated by numerical

solution of Eq. (5).
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ORDER                        REPRINTS

where Q
1
¼ QMe,z

0 is the exchange capacity of zeolite for cations Menþ,

QtE
¼ CMe,z is the concentration of cations Menþ in zeolite at tE . 0, and K is

the rate constant. Since integration of Eq. (3) gives

1

(Q1 ÿ QtE )
ÿ a ¼ KtE (2)

Figure 2. Influence of the initial concentration of sodium ions in the liquid phase

(CNa,s
0 ) on the equilibrium uptake (CCd,z(eq)).

Table 1. Initial concentrations of cadmium ions (CCd,s
0 ) and of sodium ions (CNa,s

0 ) in

solution and equilibrium concentrations of Cd2þ in zeolite A [CCd,z(eq)], of Cd
2þ ions

in solution [CCd,s(eq)], and of Naþ ions in solution [CNa,s(eq)].

CCd,s
0

(mol dm23)

CNa,s
0

(mol dm23)

CCd,z(eq)

(mol g21)

CCd,s(eq)

(mol dm23)

CNa,s(eq)

(mol dm23)

4.27 � 1023 0 2.73 � 1023 1.54 � 1023 5.46 � 1023

4.46 � 1023 0 2.71 � 1023 1.75 � 1023 5.42 � 1023

4.37 � 1023 2.15 � 1022 2.35 � 1023 2.02 � 1023 2.62 � 1022

4.50 � 1023 4.71 � 1022 2.25 � 1023 2.25 � 1023 5.16 � 1022

4.39 � 1023 8.70 � 1022 2.00 � 1023 2.39 � 1023 9.10 � 1022

4.58 � 1023 1.74 � 1021 1.80 � 1023 2.78 � 1023 1.77 � 1021

Biškup and Subotić930
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ORDER                        REPRINTS

chemical exchange is characterized by a linear relationship between (Q
1
2 QtE

)

and tE. On the other hand, Boyd et al.[32] and later, Varon and Rieman[42] con-

cluded that the plots 2log(1 2 QtE
/Q

1
) vs. tE should be linear if the chemical

reaction is the rate-determining step, i.e.,

ÿ log 1ÿ
QtE

Q1

� �

¼ KtE (3)

Although diffusion as a controlling mechanism of exchange on zeolites is

widely accepted, the diffusion equation is strictly valid only for exchange of

cations from solution having the same charge and diffusion coefficient as the

cations in monodispersed spherical particles of zolite.[36,42] Most real systems

do not satisfy these conditions. Moreover, the diffusion coefficient changes its

value with the extent of the exchange process.[42] On the other hand,

simplification of the original equation, e.g., F ¼ QtE
/Q

1
¼ k (tE)

1/2, restricts

the analysis of experimental data either to a low extent of the exchange

(F � 0.05) or very short exchange time.[36] In addition, diffusion of ions in the

channel/void system of zeolite is only one part of the entire process of

replacement of the ions positioned at specific sites in the zeolite framework

with the ions from solution. This makes any analysis of the exchange process

using the diffusion equation very uncertain. In this context, although it cannot

be strictly evaluated, an assumption that the exchange process between Naþ

ions from zeolite A and Cd2þ ions from solution is slow compared to any

diffusion process in zeolite particles is quite reasonable. In addition, the

second-order reaction exchange model has no limitation with respect to

particle size and shape,[43] and thus the simplified relationships between t and

F, derived on the basis of this model [see Eqs. (2) and (3)], are valid for most

of or even the entire exchange process. Hence, the linear relationship between

t and [1/(Q
1
2 QtE

)] (correlation factor R ¼ 0.9913; see Fig. 3) and t and

2log(1 2 Q
1
/QtE

) (R ¼ 0.984; see Fig. 4), respectively, during nearly the

entire exchange process (CNa,s
0

¼ 0) indicates that the second order is the most

apparent rate-determining step of the exchange process.

Based on the assumption that the kinetics of exchange of Naþ ions from

the zeolite by Cd2þ ions in the solution of a constant batch volume can be

defined as a second-order reaction,

dCCd,z

dtE
¼ kf(Q

0
Cd,z ÿ CCd,z)aCd,s ÿ kbCCd,zaNa,s (4)

whereQCd,z
0 is the exchange capacity of zeolite A for Cd2þ ions (maximum amount

of Cd2þ ions that may be exchanged by Naþ ions from the unit mass of zeolite 4A

(QCd,z
0

¼ 2.74 � 1023molg21); CCd,z is the concentration of Cd2þ ions in zeolite

Aat tE . 0;aCd;s ¼ g
CdðNO3Þ2
NaNO3

CCd;s,CCd,s ¼ CCd(NO3)2
¼ CCd,s

0
2 CCd,z is the molar

Removal of Heavy Metal Ions from Solutions Using Zeolites. III 931
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ORDER                        REPRINTS

concentration of cadmium ions in the solution at tE . 0; and aNa;s ¼

gNaNO3

CdðNO3Þ2
CNa;s and CNa,s ¼ CNaNO3

¼ CNa,s
0

þ C 0
Na,s is the molar concentration of

Naþ ions in the solution at tE . 0, where C Na,s
0

¼ C 0
NaNO3

is the initial (at tE ¼ 0)

molar concentration of Naþ ions in solution. Since an increase in the concentration

C 0
Na,s of Na

þ ions in solution is the consequence of the exchange process between

the Naþ ions from the zeolite and the Cd2þ ions from the solution, the

concentration C 0
Na,s may be expressed as: C 0

Na,s ¼ 2CCd,z, and thus

a0Na;s ¼ 2gNaNO3

CdðNO3Þ2
CCd;z. The values, QCd,z

0 , CCd,z, CCd,s
0 , CNa,s, C 0

Na,s, and

CNa,s
0 represent moles of the corresponding cations (Naþ, Cd2þ) in the system

(1g of zeolite A in a dm3 of suspension). At equilibrium (the end of the

exchange process),

dCCd,z

dtE
¼ 0 (5)

and thus,

kb ¼
kf Q

0
Cd,z ÿ CCd,z(eq)

� �

g
Cd(NO2)2
NaNO3

C0
Cd,s ÿ CCd,z(eq)

� �

CCd,z(eq)g
NaNO3

Cd(NO3)2
2CCd,z(eq)þ C0

Na,s

� � (6)

Figure 3. Dependence of [1/(Q1 2 QtE
)] ¼ [1/(CCd,z(eq) 2 CCd,z)] on tE for the

exchange process between cadmium ions from solution (CNa,s
0

¼ 0, CCd,s
0

¼ 4.46 � 1023

mol dm23) and sodium ions from zeolite A.
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ORDER                        REPRINTS

whereCCd,z(eq) is concentration (inmol g21) of Cd2þ ions in zeolite A at the end of

the exchange process.

The activity coefficients of NaNO3 in a binary mixture with Cd(NO3)2,

gNaNO3

CdðNO3Þ2
and activity coefficients of Cd(NO3)2 in a binary mixture with

NaNO3, g
CdðNO3Þ2
NaNO3

may be calculated by the Glueckauf equations:[44,45]

log gNaNO3

Cd(NO3)2
¼ loggNaNO3,s

ÿ
CCd,s

4I

� K1 log gNaNO3,s
ÿ K2 log gCd(NO3)2,s

ÿ
K3

(1þ I)

� �

(7)

log g
Cd(NO3)2
NaNO3

¼ loggCd(NO3)2,s
ÿ
CNa,s

4I

� K4 log gCd(NO3)2,s
ÿ K5 log gNaNO3,s

ÿ
K6

(1þ I)

� �

(8)

where gCd(NO3)2
is the activity coefficient of cadmium nitrate in the cadmium

nitrate solution having the concentration CCd,s;
[46] gNaNO3,s

is the activity

coefficient of sodium nitrate in the sodium nitrate solution having the

Figure 4. Dependence of 2log(1 2 QtE
/Q

1
) ¼ 2log(1 2 CCd,z(eq)) on tE for the

exchange process between cadmium ions from solution (CNa,s
0

¼ 0, CCd,s
0

¼ 4.46 � 1023

moldm23) and sodium ions from zeolite A.
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concentration CNa,s;
[45] and I ¼ 3CCd,s þ CNa,s is the ionic strength of the

mixed solution. The constants K1–K6 were calculated as[44,45]

K1 ¼ jzCdj(2jzCdj ÿ jzNaj þ jzNO3
j) ¼ 8

K2 ¼ jzNaj
(jzCdj þ jzNO3

j)2

(jzNaj þ jzNO3
j)

¼ 4:5

K3 ¼ 0:5jzNajjzCdjjzNO3
j
(jzNaj ÿ jzCdj)

2

(jzNaj þ jzNO3
j)
¼ 0:5

K4 ¼ jzNaj(2jzNaj ÿ jzCdj þ jzNO3
j) ¼ 1

K5 ¼ jzCdj
(jzNaj þ jzNO3

j)2

(jzCdj þ jzNO3
j)

¼ 2:667

K6 ¼ 0:5jzCdjjzNajjzNO3
j
(jzCdj ÿ jzNaj)

2

(jzCdj þ jzNO3
j)
¼ 0:333

where jzNaj ¼ 1, jzCdj ¼ 2, and jZNO3
j ¼ 1 are the absolute values of the

charges of Naþ, Cd2þ, and NO3
2 ions.

An analysis of the change in the activity coefficientsgNaNO3

CdðNO3Þ2
and g

CdðNO3Þ2
NaNO3

during the exchange process showed that the values of g
CdðNO3Þ2
NaNO3

and gNaNO3

CdðNO3Þ2

are almost constant during the exchange process (see Table 2 as an example) but

considerably decrease with increasing concentration CCd,s
0 (see Table 3). Hence,

the values of g
CdðNO3Þ2
NaNO3

and CNa,s
0 in Table 3 represent their average, i.e.,

gNaNO3

CdðNO3Þ2
¼ ½

Pn
i¼1ðg

NaNO3

CdðNO3Þ2
Þi�=n and g

CdðNO3Þ2
NaNO3

¼ ½
Pn

i¼1ðg
CdðNO3Þ2
NaNO3

Þ�=n, where n

is the number of the measuring/ calculation for each kinetics (see Table 2).

In order to evaluate the model of the exchange kinetics expressed by

Eq. (4), the value of kb was substituted by the right-hand side of Eq. (6) and

then the values of constant kf for the corresponding values ofQCd,z
0 ,CCd,s

0 ,CNa,s
0 ,

CNa,s(eq), CCd,z(eq),CCd,s(eq), g
NaNO3

CdðNO3Þ2
, and g

CdðNO3Þ2
NaNO3

, listed in Tables 1 and 3,

were calculated by an iterative numerical solution of Eq. (4), using a fourth-

order Runge–Kutta method. Then the appropriate values of the constant

kbwere calculated using Eq. (6), using the corresponding values ofQCd,z
0 ,CCd,s

0 ,

CNa,s
0 , CCd,z(eq), g

NaNO3

CdðNO3Þ2
, and g

CdðNO3Þ2
NaNO3

and the values of kf calculated as

described above. The appropriate numerical values of the constants kf and kb as

well as the standard deviations of kf are listed in Table 4.

The curves in Fig. 1 represent the changes of CCd,z with tE, calculated by

numerical solutions of Eq. (4) using the appropriate values of the con-

stants QCd,z
0 , CCd,s

0 , CCd,z(eq), and CNa,s
0 (Table 1) gNaNO3

CdðNO3Þ2
, and g

CdðNO3Þ2
NaNO3

(Table 3); kf and kb (Table 4). The results presented in Fig. 1 show that the
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agreement between the calculated (curves) and measured (symbols) CCd,z vs.

tE functions are very well for all the exchange kinetics examined, what is

evident from the values of standard deviations (see Table 4). This indicates

that the process of exchange between Naþ ions from zeolite A and Cd2þ ions

from solution takes place in accordance with the proposed model (second-

order reaction)[8,24,25,29,41] and that the kinetics of the exchange process may

be described by Eq. (4). Considerably faster forward reaction (exchange of

Cd2þ ions from solution with Naþ ions from zeolite A) relative to the

backward reaction (exchange of Naþ ions from solution with Cd2þ ions from

Table 2. Values of the ionic strength, I, and activity coefficients gCdðNO3Þ2
, gNaNO3

,

g
CdðNO3Þ2
NaNO3

, and gNaNO3

CdðNO3Þ2
at different stages of the exchange process of Cd2þ ions

from solution with Naþ ions from zeolite A. CCd,s
0

¼ 4.5 � 1023mol dm23,

CNa,s
2

¼ 4.71 � 1023mol dm23.

i tE (min) Ii (mol dm23) (gCd(NO3)2
)i
a (gNaNO3

)i
b ðgNaNO3

CdðNO3Þ2
Þic ðg

CdðNO3Þ2
NaNO3

Þid

1 0 0.0606 0.970 0.830 0.859 0.912

2 0.5 0.0600 0.974 0.828 0.850 0.910

3 1 0.0593 0.974 0.824 0.845 0.907

4 1.5 0.0591 0.974 0.824 0.844 0.906

5 2 0.0590 0.974 0.824 0.843 0.906

6 2.5 0.0589 0.974 0.824 0.843 0.906

7 3 0.0588 0.974 0.824 0.842 0.905

8 4 0.0587 0.974 0.824 0.842 0.905

9 5 0.0585 0.980 0.824 0.841 0.905

10 7.5 0.0585 0.980 0.824 0.840 0.908

11 10 0.0585 0.980 0.824 0.840 0.908

12 15 0.0583 0.980 0.822 0.837 0.906

13 20 0.0584 0.980 0.822 0.837 0.906

14 25 0.0584 0.980 0.822 0.837 0.906

15 30 0.0585 0.980 0.822 0.837 0.906

16 60 0.0583 0.980 0.822 0.837 0.906

17 80 0.0583 0.980 0.822 0.837 0.906

18 100 0.0583 0.980 0.822 0.837 0.906

19 125 0.0582 0.980 0.822 0.837 0.906

20 140 0.0584 0.980 0.822 0.837 0.906

21 160 0.0584 0.980 0.822 0.837 0.906

22 180 0.0583 0.980 0.822 0.837 0.906

Averages: 0.0587 0.980 0.823 0.841 0.907

aFrom Ref.[46].
bFrom Ref.[47].
cCalculated using Eq. (7).
dCalculated using Eq. (8).
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zeolite A), i.e., kf/kb � 104, is in accordance with the finding that the affinity

of zeolite A for cadmium ions is considerably higher than the affinity for the

host sodium ions.[21]

As expected from formal chemical and reaction reasons, numerical values

of both constants kf and kb do not change considerably with the concentration of

NaNO3 (CNaNO3
¼ 0.0215–0.174mol dm23) added in the system. This is,

together with fairly good agreement between measured and calculated kinetics

(see Fig. 1), an additional argument that the exchange between Naþ ions from

zeolite A and Cd2þ ions from solution takes place by the second-order reaction.

On the other hand, a decrease of both the values kf and kb in the systems

containing NaNO3 relative to the “pure” system may be explained by specific

cation–anion interactions.[48,49] Namely, it is well known that Cd2þ ions tend to

form CdNO3
þ complex in the presence of NO3

2 ions,[48,49] e.g., 5.5 � 1023M

solution of Cd(NO3)2 solution contains about 93% of Cd2þ ions and about 7% of

CdNO3
þ ions. Hence, it can be assumed that an increase in the concentration of

Table 3. Initial concentrations of cadmium ions (CCd,s
0 ) and of sodium

ions (CNa,s
0 ) in solution and the average values of the activity coefficients

gNaNO3

CdðNO3Þ2
and g

CdðNO3Þ2
NaNO3

.

CCd,s
0 (mol dm23) CNa,s

0 (mol dm23) gNaNO3

CdðNO3Þ2
g
CdðNO3Þ2
NaNO3

4.27 � 1023 0 0.990 0.978

4.46 � 1023 0 0.991 0.976

4.37 � 1023 2.15 � 1022 0.892 0.931

4.50 � 1023 4.71 � 1022 0.841 0.906

4.39 � 1023 8.70 � 1022 0.787 0.874

4.58 � 1023 1.74 � 1021 0.726 0.835

Table 4. Initial concentrations, of cadmium ions (CCd,s
0 ) and of sodium ions (CNa,s

0 ) in

solution, values of the rate constants of the forward reaction (kf), of the backward

reaction (kb), and the standard deviation [D(kf)].

CCd,s
0

(mol dm23)

CNa,s
0

(mol dm23)

kf
(mol21min21) D(kf)

kb
(mol21min21)

4.27 � 1023 0 2.007 � 102 2.086 � 1025 3.79 � 1024

4.27 � 1023 0 2.007 � 102 2.761 � 1025 4.24 � 1024

4.37 � 1023 2.15 � 1022 1.068 � 102 1.564 � 1025 1.95 � 1022

4.50 � 1023 4.71 � 1022 1.071 � 102 2.267 � 1025 1.18 � 1022

4.39 � 1023 8.70 � 1022 1.061 � 102 1.953 � 1025 1.14 � 1022

4.58 � 1023 1.74 � 1021 0.995 � 102 3.975 � 1025 0.8 � 1022
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ORDER                        REPRINTS

NO3
2 ions caused by addition of NaNO3 in the system increases the amount of

CdNO3
þ complex in the solution. Assuming that the rate of exchange between

Naþ ions from zeolite A and CdNO3
þ ions from solution is slower than the rate of

exchange between Naþ ions form zeolite A and Cd2þ ions from solution, an

increase in the concentration of CdNO3
þ ions relative to the concentration of

Cd2þ ions would decrease the rate of the overall exchange process. However, the

influence of nitrate ions on the relative concentration of CdNO3
þ complex, and

thus on the overall exchange kinetics, cannot be evaluated on the basis of the

present experimental data, and thus this objective will be investigated in our

future work.

CONCLUSION

An analysis of the exchange processes between the sodium ions from

zeolite A (1 g/dm3) and cadmium ions from the solutions (CCd,s
0 � 4.5 � 1023

mol dm23) containing different contents of Naþ ions (CNa,s
0

¼ 0–0.348

mol dm23) at 258C have shown that the overall exchange process may be

described by two second-order processes: the forward reaction between the

cadmium ions from solution and sodium ions from zeolite A and the backward

reaction between sodium ions from solution and cadmium ions from zeolite

A. Invariability of the rate constants kf and kbwith the concentration of NaNO3

added to the systems confirms this conclusion. A considerably higher rate of

the forward reaction relative to the backward reaction (kf � kb) is the con-

sequence of the higher affinity of zeolite A to Cd2þ ions from solution than the

host sodium ions. The decrease in values of both constants kf and kb in the

systems containing NaNO3 relative to the “pure” systems can be explained

by the formation of CdNO3
þ ions in the presence of NO3

2 ions. As expected,

the equilibrium uptake, CCd,z(eq), decreases with increasing concentration of

NaNO3 added in the systems.
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